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Confidence reports in decision-making with
multiple alternatives violate the Bayesian
confidence hypothesis
Hsin-Hung Li 1✉ & Wei Ji Ma 1,2

Decision confidence reflects our ability to evaluate the quality of decisions and guides sub-

sequent behavior. Experiments on confidence reports have almost exclusively focused on

two-alternative decision-making. In this realm, the leading theory is that confidence reflects

the probability that a decision is correct (the posterior probability of the chosen option).

There is, however, another possibility, namely that people are less confident if the best two

options are closer to each other in posterior probability, regardless of how probable they are

in absolute terms. This possibility has not previously been considered because in two-

alternative decisions, it reduces to the leading theory. Here, we test this alternative theory in

a three-alternative visual categorization task. We found that confidence reports are best

explained by the difference between the posterior probabilities of the best and the next-best

options, rather than by the posterior probability of the chosen (best) option alone, or by the

overall uncertainty (entropy) of the posterior distribution. Our results upend the leading

notion of decision confidence and instead suggest that confidence reflects the observer’s

subjective probability that they made the best possible decision.
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Confidence refers to the “sense of knowing” that comes with
a decision. Confidence affects the planning of subsequent
actions after a decision1,2, learning3, and cooperation in

group decision making4. Failures of utilizing confidence infor-
mation have been linked to psychiatric disorders5.

While human observers can report their self-assessment of the
quality of their decisions6–12, the computations underlying con-
fidence reports are still insufficiently understood. The leading
theory of confidence suggested that confidence reflects the
probability that a decision is correct7,8,13–17. We refer to this idea
as the “Bayesian confidence hypothesis”, meaning that the
decision-makers use the posterior probability of the chosen
category (i.e. the subjective probability that decision is correct) for
their confidence reports. Accordingly, in neurophysiological stu-
dies, a brain region or a neural process is considered to represent
confidence if its responses correlate with the probability that a
decision is correct18–20. Behavioral studies testing whether human
confidence reports follow Bayesian confidence hypothesis have
shown mixed results: While some studies found resemblances
between Bayesian confidence and empirical data18,19,21,22, others
have suggested that confidence reports deviate from the Bayesian
confidence hypothesis23–25.

Even though the Bayesian confidence hypothesis is the leading
theory of confidence, there is currently no evidence to rule out the
possibility that confidence is affected by the probability of correct
of the unchosen options. Specifically, people could be less con-
fident if the next-best option is very close to the best option. In
other words, confidence could depend on the difference between
the posterior probabilities of the best and the next-best options,
rather than on the absolute value of the posterior of the best
option. The reason that this idea has not been tested before might
be that previous studies of decision confidence predominantly
used two-alternative decision tasks; in such tasks, the alternative
hypothesis is equivalent to the Bayesian confidence hypothesis,
because the difference between the two posterior probabilities in a
two-alternative task is a monotonic function of the highest pos-
terior probability. Thus, to dissociate these two models of con-
fidence, we need more than two alternatives. Here, we use a three-
alternative decision task. To preview our main result, we find that

the difference-based model accounts well for the data, whereas
the model corresponding to the Bayesian confidence hypothesis
and a third, entropy-based model do not.

To investigate the computations underlying confidence reports
in the presence of multiple alternatives, we designed a three-
alternative categorization task. On each trial, participants viewed
a large number of exemplar dots from each of the three categories
(color-coded), along with one target dot in a different color
(Fig. 1a). Each category corresponded to an uncorrelated, iso-
tropic Gaussian distribution in the plane. We asked participants
to regard the stimulus as a bird’s eye view of three groups of
people. People within a group wear shirts of the same color, and
the target dot represents a person from one of the three groups.
Participants made two responses: the category of the target, and
their confidence in their decision on a four-point Likert scale.

To manipulate participants’ beliefs (posterior probability dis-
tribution), we used different configurations of the category dis-
tributions and varied the position of the target dot within each
configuration (Fig. 1b, c). This design allowed us to test quantitative
models of how the posterior distribution gives rise to confidence
reports (see an illustration of this idea in Supplementary Fig. 1).

Results
Model. Generative model. Each category is equally probable. We
assume that the observer makes a noisy measurement x of the
position s of the target dot. We model the noise as obeying an
isotropic Gaussian distribution centered at the target dot.

Decision model: We now consider a Bayesian observer. We
assume that the observer knows that each category is equally
probable (p(C)= 1/3), and knows the distribution associated with
each category (group) based on the exemplar dots. Given a
measurement x, the posterior probability of category C is then

p C xjð Þ ¼ p x Cjð ÞX3
C0¼1

p x C0jð Þ ð1Þ

We further assume that due to decision noise or inference
noise, the observer does not maintain the exact posterior
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Fig. 1 Experimental procedure and stimuli. a Each trial started with the presentation of the stimulus including exemplar dots in three different colors
representing the distribution of each of the three categories and one target dot, the black dot. Observers first reported their decisions in the categorization
task and then reported their confidence by using the rectangular buttons presented at the bottom of the screen. b, c Schematic representation of the
distribution of the categories. The circles are centered at the mean location of each category. The width of the circles corresponds to 2.5 times the standard
deviation of the category distribution. (b) The four conditions tested in Experiment 1 and 3. c The four conditions tested in Experiment 2. The exemplar dots
in (a) are based on the distribution depicted in the top panel in (b).
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distribution, p(C | x), but instead a noisy version of it. This type of
decision noise is consistent with the notion that a portion of
variability in behavior is due to “late noise” at the level of decision
variable26–28. We modeled decision noise by drawing a noisy
posterior distribution from a Dirichlet distribution around the
true posterior (Fig. 2a, b; See details in Methods). In our case, the
true posterior, which we denote by p, consists of the three
posterior probabilities from Eq.(1): p= (p(C= 1 | x), p(C= 2 | x),
p(C= 3 | x)). The magnitude of decision noise, the amount of
variation around p, is (inversely) controlled by a concentration
parameter α>0. When α→∞, the variation vanishes and the
posterior is noiseless. In general, the “noisy posterior”, which we
denote as a vector q, satisfies q~Dirichlet(αp). We assume that
when reporting the category of the target, the observer chooses
the category C with the highest q(C | x). Unless otherwise
specified, we will from now on refer to the noisy posterior
distribution as simply the posterior distribution.

We introduce three models of confidence reports: the Max
model, the Entropy model and the Difference model. Each of
these models contains two steps: (a) mapping the posterior
distribution (q) to a real-valued internal confidence variable; (b)
applying three criteria to this confidence variable to divide its
space into four regions, which, when ordered, map to the four
confidence ratings. The second step accounts for every possible
monotonic mapping from the internal confidence variable to the
four-point confidence rating. The three models differ only in the
first step.

The Max model corresponds to the Bayesian confidence
hypothesis. In this model, the confidence variable is the probability
that the chosen category is correct, or in other words, it is the
highest of the three posterior probabilities (Fig. 2c). In this model,
the observer is least confident when the posterior distribution is
uniform. Importantly, after the posterior distribution is computed,

the posterior probability of the unchosen options does not further
contribute to the computation of confidence.

In the Difference model, the confidence variable is the
difference between the highest and second-highest posterior
probabilities. In this model, confidence is low if the evidence for
the next-best option is strong, and the observer is least confident
whenever the two most probable categories are equally probable.
One interpretation of this model is that confidence reflects the
observer’s subjective probability that they made the best possible
choice, regardless of the actual posterior probability of that
choice. An alternative interpretation is that decision-making
consists of an iterative process in which the observer reduces a
multiple-alternative task to simpler (two-alternative) tasks (see
the Discussion section). (Note that a model that uses the
difference of the probability of the best option and the average of
the non-chosen options is equivalent to the Max model.)

In the Entropy model, the confidence variable is the negative of
the uncertainty conveyed by the entire posterior distribution, as
quantified by its negative entropy. High confidence is associated
with low entropy, and vice versa. Like in the Max model, the
observer is least confident when the posterior distribution is
uniform. Unlike in the Max model, however, the posterior
probabilities of the non-chosen categories directly affect con-
fidence. For the details of the models, see Methods.

All three models are Bayesian in the sense that they compute
the posterior probability distribution and categorize the target dot
into the category with the highest posterior. Thus, in all three
models, the unchosen options “implicitly” affect confidence by
contributing to the denominator in the computation of the
posterior probabilities. In the Discussion, we discuss a model in
which the unchosen option (e.g., the least probable category) is
disregarded before even contributing to the normalization of the
posterior. The three models differ in how the confidence variable
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Fig. 2 Models. a Generative model. Target position is represented by s. Two sources of variability are considered in the model: First, observers have access to
noisy measurement x, a Gaussian distribution centered at s with a standard deviation σ. Second, given the same measurement x, the posterior distribution varies
across trials due to decision noise, modeled by Dirichlet distribution, of which spread (represented by the shade of the ternary plot) is controlled by a parameter α
(see Methods). On each trial, a decision Ĉ and a confidence c are read out from the posterior distribution of that trial. b We use ternary plots to represent all
possible posterior distributions. For example, a point at the center represents a uniform posterior distribution; at the corners of the ternary plot, the posterior
probability of one category is one while the posterior for the other two categories are zeros. c The bar graphs illustrate how confidence is read out from posterior
probabilities in each model. For the purposes of these plots, we did not include decision noise here. The color of each ternary plot represents the confidence as a
function of posterior distribution for each model. The color is scaled for each ternary plot (independently) to take the whole range of the color bar.
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is read out from the posterior distribution. The Max model is
unique in assuming that after the computation of the posterior
probabilities, the unchosen categories do not further affect the
computation of confidence.

In our three-alternative task, these models generate qualita-
tively different mappings from the posterior distribution to the
confidence variable (Fig. 2c). In a standard two-alternative task,
however, the models would have been indistinguishable, because
the probability of the chosen category would have determined the
probability of the non-chosen category.

The Max, Difference and Entropy models are our three main
models. So far, the sources of variability in these models are
sensory noise (Sen) and Dirichlet decision noise (Dir). We name
the corresponding models Max-Sen-Dir, Diff-Sen-Dir, Ent-Sen-
Dir models in the supplementary figures and supplementary
tables in order to distinguish them from model variants that
consider different sources of variability (introduced later).

We fitted the free parameters to the data of each individual
subject using maximum-likelihood estimation, where the data on
a given trial consist of a decision-confidence pair. Thus, we
accounted for the joint distribution of decisions and confidence
ratings24,25,29 (see Methods). We compared models using the
Akaike Information Criterion (AIC30). A model recovery analysis
suggests that if the true model is among our tested models, our
model comparison procedure is able to identify the correct model
(see Methods and Supplementary Fig. 3).

Experiment 1. In Experiment 1, the centers of the three category
distributions were aligned vertically (Fig. 1b). There were four
conditions: In the first two conditions, the centers were evenly
spaced horizontally. In the last two conditions, the center of the
central distribution was closer to the center of either the left or
the right distribution. The vertical position of the target dot was

sampled from a normal distribution, and the horizontal position
of the target dot was sampled uniformly between the center of the
leftmost and right-most classes plus an extension to the left and
the right (see Methods).

We plotted the psychometric curves (mean confidence report
as a function of the horizontal position of the target dot) by
averaging confidence reports across trials using a sliding window
(Fig. 3). Mean confidence report varied as a function of the
horizontal position of the target. In the first two conditions
(Fig. 3), where the three distributions were evenly spaced, the
psychometric curves showed two dips, with the lowest confidence
attained at two positions symmetric around 0°.

We simulated the predicted psychometric curves using the
best-fitting parameters of each model (Fig. 3b). The fits of the
Max and the Difference models resembled the data, but the best
fit of the Entropy model showed a dip at the center in the first
condition.

In the third and fourth conditions, in which the three
distributions were unevenly spaced, mean confidence was lowest
around the centers of the two distributions that were closest to
each other. Only the Difference model exhibited this pattern,
while the Max and the Entropy models deviated more clearly
from the data.

The models not only make predictions for confidence reports,
but also for the category decisions (Supplementary Fig. 2).
Participants categorized the target dot based on its location, and
when the target dot was close to the boundary between two
neighboring categories (the location where two categories have
equal likelihood), they assigned the target to those two
neighboring categories with nearly equal probabilities. In general,
this pattern is consistent with an observer who chooses the
category associated with the highest posterior probability. The
Entropy model fits worst, even though all three models used the
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conditions. The black curves represent group mean ± 1s.e.m. Blue curves represent the model fit averaged across individuals.
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same rule for the category decision; this is because the confidence
data also need to be accounted for. The Difference model
outperformed the Max model by a group-summed AIC score of
391 (95% CI [222, 569]) and the Entropy model by 1937 (95% CI
[1363, 2562]) (Fig. 4a and Supplementary Table 1).

We further tested reduced versions of each of the three
confidence models by removing either the sensory noise or the
decision noise from the model. The Difference model out-
performed the Max model and the Entropy model regardless of
these manipulations (Supplementary Fig. 4A and Supplementary
Table 1). The sensory noise played a minor role in this task
compared to the decision noise. For example, removing the
sensory noise from the Difference model increased the AIC by
121 (95% CI [48, 199]), while removing the inference noise
increased the AIC by 737 (95% CI [590, 914]). Using the Bayesian
information criterion (BIC)31 for model comparison led to the
same conclusions (Supplementary Fig. 5A and Supplementary
Table 2).

So far, we jointly fitted the category decision and confidence
reports. One could wonder whether independently fitting the
confidence reports would lead to different results. We found
the same results when only fitting the confidence reports: The
Difference model outperformed the other two models, and the
decision noise had a stronger influence on the model fit
(Supplementary Figs. 6 and 7). Because the Max, the Difference
and the Entropy used the same rule for category decisions, we
compared category decision models that used the same decision
rule (reporting the category with the highest posterior prob-
ability), but included sensory noise only, decision noise only, or
both. We fitted the category decisions alone and found that the
models including the decision noise fit the data better than the
model with the sensory noise alone (Supplementary Figs. 8
and 9). This is similar to the results obtained by fitting the
confidence reports alone or by jointly fitting both category
decisions and confidence reports.

We tested various alternative models (see details in Supple-
mentary Information). We found that the Difference model
outperformed the Max and the Entropy models when we replaced
Dirichlet decision noise by drawing samples from the true
posterior, or when we added noise in the measurement of the
category means (Supplementary Fig. 10A). In addition, we tested
heuristic models that made category decisions and confidence
reports based on the category means and the noisy measurement

of the target location (x) but did not compute posterior
probabilities. Still, the heuristic models did not fit the data better
than the Difference model (Supplementary Fig. 10A).

Experiment 2. In Experiment 2, we aimed to test whether the
findings in Experiment 1 could be generalized to other stimulus
configurations, where the centers of the categories varied in a
two-dimensional space. We tested four conditions in which the
centers of the three groups varied along both horizontal and
vertical axis (Fig. 1c). We sampled the target dot positions uni-
formly within a circular area centered on the screen. In addition,
the distribution of the categories used in Experiment 2 allowed
us to probe confidence reports in a wider range of posterior
distributions (Supplementary Fig. 1B). For example, we can
probe the confidence report when the target dot had the same
distance to all three categories in Experiment 2, but not in
Experiment 1.

The “psychometric curve” is now a heat map in two dimensions
(Fig. 5). The fits to these psychometric curves showed different
patterns among the three models: When the three groups formed
an equilateral triangle (Fig. 5, the first and second columns), the
confidence (as a function of target location) estimated by the
Entropy model exhibited contours that were more convex than
that in the data. In the last two conditions (Fig. 5, the third and
fourth columns), compared to the other two models, the
Difference model showed stronger resemblance to the data, as
the model exhibited an extended low confidence region at the side
where two categories were positioned closely. The results of
model comparisons were consistent with Experiment 1. The
Difference model outperformed the Max model by a group-
summed AIC score of 541 (95% CI [371, 735]) and the Entropy
model by 1631 (95% CI [1179, 2159]) (Fig. 4b). The model with
both sensory and inference noise explained the data the best, and
the inference noise had a stronger influence on the model fit than
the sensory noise (Supplementary Fig. 4B, Supplementary Fig. 5B,
Supplementary Tables 1 and 2).

Consistent with Experiment 1, we found that the Difference
model outperformed the Max and the Entropy model when we
only fitted the confidence reports (Supplementary Fig. 6B).
Models that considered other sources of variability or used
heuristic decision rules did not perform better than the Difference
model (Supplementary Fig. 10B).
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Fig. 4 Model comparisons using ΔAIC: AIC of each model compared with the Difference model. The bars represent ΔAIC summed across participants.
The error bars represent 95% bootstrapped confidence interval. a Experiment 1. b Experiment 2.
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Experiment 3. So far, we found that the Difference model fits the
data better than the Max model and the Entropy model. However,
whether participants report the probability that a decision is
correct (the Max model) might depend on the experimental
design. In Experiment 1 and 2, participants received no feedback
on their category decision. Thus, the probability of being correct
in the task could be difficult to learn. To investigate this issue, in
Experiment 3, using the same four stimulus configurations as
those in Experiment 1 (Fig. 1b), we randomly chose one of the
three groups as the true target category in each trial, and sampled
the target position from the distribution of the true category.
Feedback was presented at the end of each trial, informing par-
ticipants of the true category.

The results of model comparison were consistent with
Experiment 1 and 2. The Difference model outperformed the
Max model by a group-summed AIC score of 100 (95% CI [46,
156]) and the Entropy model by 1113 (95% CI [817, 1447])
(Supplementary Fig. 11, Supplementary Tables 1 and 2). The
model with both sensory and inference noise explained the data
the best, and the inference noise had a stronger influence on the
model fit than the sensory noise (Supplementary Figs. 4C and 5C).
These results held when we fitted the confidence reports alone, or
when other sources of variability were considered (Supplementary
Figs. 6C and 10C). Heuristic models did not fit the data better
than the Difference model (Supplementary Fig. 10C).

Discussion
To distinguish the leading model of perceptual confidence
(the Bayesian confidence hypothesis) from a new alternative
model in which confidence is affected by the posterior prob-
abilities of unchosen options, we studied human confidence
reports in a three-alternative perceptual decision task. We found
that confidence is best described by the Difference model, in
which confidence reflects the difference between the strength of
observers’ belief (posterior probability) of the top two options
in a decision. The Max model (which corresponds to the
Bayesian confidence hypothesis) and the Entropy model (in
which confidence is derived from the entropy of the posterior
distribution) fell short in accounting for the data. Our results
were robust under changes of stimulus configurations (Experi-
ment 1 and 2), and when trial-by-trial feedback was provided
(Experiment 3). Our results demonstrate that the posterior
probabilities of the unchosen categories impact confidence in
decision-making.

Decision tasks with multiple alternatives not only allow us to
dissociate different computational models of confidence, they
are also ecologically important. In the real world, human and
other animals often face decisions with multiple alternatives,
such as identifying the color of a traffic light, recognizing a
person, categorizing a species of an animal, or making a medical
diagnosis.
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Our models can be generalized to categorical choice with more
than three alternatives. Specifically, the Difference model predicts
that besides the posterior probabilities of the top two options, the
posterior of the other options does not matter as long as they add
up to the same total. A special type of categorical choice is when
the world state variable is continuous (e.g., in an orientation
estimation task) but gets discretized for the purpose of the
experiment. Consider the specific case that the posterior dis-
tribution is Gaussian. An observer following the Difference model
would compute the difference between the posteriors of the two
discrete options closest to the peak. This serves as a coarse
approximation to the curvature of the posterior distribution at its
peak, which, for Gaussians, is monotonically related to its inverse
variance, consistent with an earlier model by van den Berg et al.29,
in which confidence is based on the precision parameter of the
posterior in continuous estimation tasks29. Outside the realm of
Gaussian and similar distributions, the Difference model and van
den Berg et al.29’s model might be distinguishable. For example,
when the posterior distribution is bimodal, with the modes
slightly different in height, the variance of the posterior is
dominated by the separation between the modes, whereas the
Difference model will use the difference in height for confidence
reports.

Although many behavioral studies have emphasized simila-
rities between human confidence reports and predictions of
Bayesian models e.g18,21,22., the Bayesian confidence hypothesis
has been questioned before8,13–16. In addition to the probability
of being correct, confidence is influenced by various factors such
as reaction time32, post-decision processing33–36, and the mag-
nitude of positive evidence37–40. Two model comparison studies
have shown deviations from Bayesian confidence hypothesis in
two-alternative decision tasks24,25. However, in one study24, the
experimental design did not allow the authors to strongly dis-
tinguish the model that was based on Bayesian confidence
hypothesis from those that were not. Moreover, in both
studies24,25, the alternative models were based on heuristic deci-
sion rules without a broader theoretical interpretation. Here, we
have identified a type of deviation from the Bayesian confidence
hypothesis that is not only of a qualitatively different nature, but
that also raises new theoretical questions.

Specifically, the Difference model is currently a descriptive
model. We have two suggestions to interpret it as an outcome of
approximate inference. First, the Difference model might be an
approximation to a model in which confidence depends on the
probability that an observer made the best possible decision.
In this view, the observer possesses metacognitive knowledge that
their decision is based on the noisy posterior q rather than
the true posterior p, and consequently, realizes that it is possible
that the chosen category is not the category with the highest true
posterior probability. Confidence would then be derived from the
probability that the chosen category has the highest true posterior
probability. The stronger the evidence for the next-best option,
the less likely is the case, which would lead to lower confidence.
This interpretation is consistent with recent work that showed
that subjective confidence guides information seeking during
decision-making41. Under the Difference model, during infor-
mation seeking, the observer’s goal is to make sure that the best
option is better than the alternative options. Low confidence
would encourage the observer to collect more information in
order to strengthen the belief that the best option is better than
the next-best option.

Second, the finding that confidence is best described by the
relative strength of the evidence of the top two options might be
related to other findings in multiple-alternative decision-making.
In one experiment, the observer watched columns of bricks build
up on the screen, and reported which column had the highest

accumulation rate42. A heuristic model in which the observer
makes a decision when the height of the tallest column exceeds
the height of the next-tallest column by a fixed threshold captured
the overall pattern of people’s behavior. In a study on self-
directed learning in a three-alternative categorization task,
observers had to learn the category distributions by sampling
from the feature space and receiving feedback. Instead of
choosing the most informative samples, human observers chose
ones for which the likelihood of two categories were similar,
namely those located at boundaries between pairs of two cate-
gories43. This literature allows us to speculate that observers
might decompose a multiple-alternative decision into several
simpler (perhaps two-alternative) decisions. This notion is
reminiscent of the concept in prospect theory that before a phase
of evaluation, extremely unlikely outcomes might be first dis-
carded in an “editing” phase44. Hence, an alternative interpreta-
tion of our results is that confidence reports deviate from the
Bayesian confidence hypothesis (the Max model) because the
observer estimates the probability of correct in a way that ignores
the options that are discarded before final evaluation. In the
Difference model, the least favorite option is not completely
discarded because it decreases the posterior probabilities of the
other two options (and thus their difference) by contributing to
the normalization pool45,46. Therefore, we consider an extreme
version of editing, the Ratio model, in which the least-favorite
option does not even participate in normalization, and thus
confidence solely depends on the likelihood ratio between the top
two options. The Difference model and the Ratio model are not
distinguishable in Experiment 1 and 2 (Supplementary Fig. 12).
In Experiment 3, the Difference model has a slight advantage over
the Ratio model by a group-summed AIC of 51 (95% CI [18, 90]).
Testing variable numbers of categories within an experiment
might help to differentiate between these two models.

We found that compared to the sensory noise, the noise
associated with the computation of posterior probability plays a
more important role in our task. This is consistent with the
findings of a recent study26. The relative unimportance of sensory
noise could be partly due to our experimental design, which used
stimuli with strong signal strength (saturated color and unlimited
duration). Differently from our study, Drugowitsch et al.26 used
an evidence accumulation task and further distinguished two
types of decision noise: inference noise that was added with each
new stimulus sample, and selection noise that was injected only
once, right before the final response. Because our experiment only
had one stimulus in each trial, it was not set up to distinguish
these two sources of variability. While modeling decision noise
using Dirichlet distribution was successful, we found that models
in which the category mean is not known exactly but measured in
a noisy fashion also fit the data in two experiments quite well
(Diff-Sen-Mean model in Experiment 1 and Experiment 2; Sup-
plementary Fig. 10). This is consistent with a recent finding that
imperfect knowledge about the experimental parameters
explained a significant portion of the behavioral variability in
two-alternative decision tasks47.

Across the three experiments, we did not find evidence that any
of the heuristic models we tested outperformed the Difference
model. In only one experiment, a heuristic model was indis-
tinguishable from the Difference model (DistW-Sen-Mean model
in Experiment 2; Supplementary Fig. 10B). These results are
different from a recent study reporting that some probabilistic but
heuristic models outperformed the Bayesian models in fitting
confidence data in two-alternative tasks25. The causes of this
discrepancy may lie in the experimental design. Adler and Ma
manipulated different levels of uncertainty by presenting brief
stimuli (50 ms) at various contrast levels. To perform the task
optimally, observers had to track the sensory uncertainty varied
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in a range (e.g., from 0.4 to 13% contrast in their main experi-
ment) in a trial-by-trial fashion. Instead, we purposely reduced
uncertainty by presenting all the stimuli at the highest achievable
contrast with unlimited duration. In addition, the distributions of
the categories were not presented explicitly in Adler and Ma’s
study whereas the distributions of the categories were presented
throughout each trial in the present study. These factors may
contribute to the fact that heuristic models performed better in
Adler and Ma’s study but not in our experiments.

The ΔAIC (relative to the Difference model) was smaller in
Experiment 3 than in Experiment 1 and 2. Intuitively, this is not
surprising, since when directly sampling from the stimulus dis-
tributions in Experiment 3, there were more target dots posi-
tioned at the far left and far right, compared to the target dots in
Experiment 1 and 2. These trials would not have been informative
to distinguish the models. All three models have the same pre-
diction (high confidence) for far-left and the far-right locations,
and this may lead to a smaller ΔAIC. To examine whether sti-
mulus selection alone could account for the smaller AIC differ-
ences, we performed a model recovery analysis. We synthesized
data based on the observers’ best-fitted parameters of the Max,
Difference and Entropy models, and we fitted the synthesized
data with these three models. We found that the performance of
the Max and the Difference models are closer in Experiment 3
than in Experiment 1 and 2, similar to the real data (Supple-
mentary Fig. 3). Thus, stimulus selection alone can account for
the smaller AIC differences.

Whereas we propose a theoretical framework for how decisions
and confidence reports are computed in multi-alternative tasks,
we are agnostic about how the decision-making process unfolds
over time. Other models exist that consider the temporal
dynamics of decision-making. In particular, drift-diffusion
models and race models jointly account for accuracy and reac-
tion times in many tasks48. Some studies have employed such
accumulation models to account for confidence judgments34,49–52.
However, these studies only considered confidence judgments in
two-alternative decision tasks. Conceptually, our findings might
be related to the “balance of evidence” (BoE) in Vickers and
colleagues’ work51,53. In a race model with two accumulators,
they suggested that confidence is computed as the difference
between the accumulated evidence of the two accumulators51.
Vickers and Lee suggested that in theory, this idea could be
extended to three-alternative tasks, but they speculated that
confidence in the chosen category (option A) might be computed
as the average of the confidence in comparing option A to option
B and the confidence in comparing option A to option C53. This
algorithm is more similar to the Max model than to the Differ-
ence model here: Assuming that A, B and C represent the evi-
dence accumulated for each of the three categories, and A is the
chosen category, confidence is computed as c*=((A−B)+ (A-
−C))/2= (3A−1)/2. Then, confidence only depends on the
chosen category A. It remains to be seen whether evidence
accumulation models designed to explain decisions in multiple-
alternative tasks (review in refs. 57,58) could be extended to
generate confidence reports that are consistent with our data and
with the Difference model.

Do our results generalize beyond perceptual decision-making?
In a two-alternative value-based decision task, observers reported
confidence in a way that was similar to that in perceptual decision
tasks:10 When observers were asked to choose the good with the
higher value, confidence increased with the posterior probability
that a decision is correct, which in turn increased with the dif-
ference in value between the two goods. In addition, choice
accuracy was higher in high-confidence trials then in low-
confidence trials, reflecting observers’ ability to evaluate their own
performance. A recent study also reported that observers are able

to reflect on their decisions and report confidence in three-
alternative value-based decision tasks54. Given that the compu-
tation of subjective value may involve a Bayesian inference
process similar to that in perception12, it might be worth inves-
tigating whether confidence reports in multiple-alternative
value-based decisions also deviate from the Bayesian confidence
hypothesis. The Difference model would predict that, confidence
is determined by the difference between the probability that
the chosen item is the most valuable and the probability that the
next-best item is the most valuable.

How does the present study advance our understanding of the
neural basis of confidence? Most neurophysiological studies of
confidence have considered the neural activity that correlates with
the probability of being correct as the neural representation of
confidence (but see ref. 55). Neural responses in parietal cortex19,
orbitofrontal cortex18 and pulvinar20 have been associated with
that representation of confidence. These studies all used two-
alternative decision tasks. Multiple-alternative decision tasks have
been used in neurophysiological studies on non-human primates
but not with the objective of studying confidence46,56–58. By
utilizing multiple-alternative tasks, neural studies could dissociate
the neural correlates of probability correct from that of the
“difference” confidence variable in the Difference model, which
according to our results, might be the basis of human subjective
confidence. A potentially important difference between human
and non-human animal studies is that in the latter, confidence is
not explicitly reported but operationalized through some aspect
of behavior, such as the probability of choosing a “safe” (opt-out)
option19,20,55,59,60, or the time spent on waiting for reward18.
Thus, one should be careful when directly comparing these
implicit reports with explicit confidence reports in human studies.

Methods
Setup. Participants sat in a dimly lit room with the chin rest positioned 45 cm from
the monitor. The stimuli and the experiment were controlled by customized
programs written in Javascript. The monitor had a resolution of 3840 by 2160
pixels and a refresh rate of 30 Hz. The spectrum and the luminance of the monitor
were measured with a spectroradiometer.

Participants. Thirteen participants took part in Experiment 1. Eleven participants
took part in Experiment 2. Eleven participants took part in Experiment 3. All
participants had normal or corrected-to-normal vision. The experiments were
conducted with the written consent of each participant. The University Committee
on Activities involving Human Subjects at New York University approved the
experimental protocols.

Stimulus. On each trial, three categories of exemplar dots (375 dots per category)
were presented along with one target dot, a black dot (Fig. 1a). The exemplar dots
within a category were distributed as an uncorrelated, circularly symmetric
Gaussian distribution with a standard deviation of 2° (degree visual angle) along
both horizontal and vertical directions. Exemplar dots from the different categories
were coded with different colors. The three colors were randomly chosen on each
trial, and were equally spaced in Commission Internationale de l’Eclairage (CIE)
L*a*b* color space. The three colors were at a fixed lightness of L*= 70 and were
equidistant from the gray point (a*= 0, and b*= 0).

In Experiment 1 and 3, the centers of the three categories were aligned vertically
to the center of the screen, and were located at different horizontal positions
(Fig. 1b). In four configurations, the horizontal positions of the centers of the three
categories were (−3°, 0°, 3°), (−4°, 0°, 4°), (−3°, −2°, 3°), and (−3°, 2°, 3°), from
the center of the screen respectively. In Experiment 2, the centers of the three
categories varied on a 2-dimensional space (Fig. 1c). In four configurations, the
horizontal positions of the centers of the three categories were (−2°, 0°, 2°),
(−1.59°, 0°, 1.59°), (−2°, −2°, 2°), and (−2°, 2°, 2°), from the center of the screen,
respectively. The vertical positions of the centers were (1.16°, −2.31°, 1.16°), (0.94°,
−1.84°, 0.94°), (1.16°, 0°, 1.16°), and (1.16°, 0°, 1.16°) from the center of the screen
respectively.

Procedures. We told participants that the three groups of exemplar dots repre-
sented a bird’s eye view of three groups of people. The three groups contained
equal numbers of people. The black dot (the target) is a person from one of the
three groups, but we do not know the color of her/his T-shirt. We asked partici-
pants to categorize the target to one of the three groups based on the (position)
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information conveyed by the dots, and report their confidence on a four-point
Likert scale.

Each trial started with the onset of the stimulus and three rectangular buttons
positioned at the bottom of the screen (Fig. 1a). On each trial, participants first
categorized the target to one of the three groups (based on the position information
conveyed by the dots) by using the mouse to click on one of the three buttons.
After participants reported their decision, the three buttons were replaced by four
buttons (labeled as “very unconfident”, “somewhat unconfident”, “somewhat
confident”, and “very confident”) for participants to report their confidence on the
decision they made. The stimuli were presented throughout each trial. Reaction
time (for both category decision and confidence reports) was unlimited. After
participants reported their confidence, all the exemplar dots and the rectangular
buttons disappeared from the screen, and the next trial started after a 600 ms inter-
trial-interval.

In Experiment 1, the vertical position of the target dot was sampled from a
normal distribution (2° std), and the horizontal position of the target dot was
sampled uniformly between the center of the leftmost and rightmost categories plus
a 0.2° extension to the left and the right. In Experiment 2, the target dot was
uniformly sampled from a circular area (2.6° radius) positioned at the center of the
screen. No feedback was provided in Experiment 1 and Experiment 2.

In Experiment 3, in each trial, we randomly chose one of the three categories
with equal probability as the true category. We then positioned the target dot by
sampling from the distribution of the true category. A feedback regarding the true
category was provided at the end of each trial: After participants reported their
confidence, all exemplar dots disappeared except that the exemplar dots from the
true category remained on the screen for an extra 500 ms. In each experiment,
participants completed one 1-hr session (84 trials per configuration in Experiment
1 and 120 trials per configuration in Experiment 2 and 3). All the trials in one
session were separated into eight blocks with equal number of trials. Different
configurations were randomized and interleaved within each block.

Participants were well informed about the structure of the stimuli. We told
observers that the distributions of the three groups are circular and symmetric, and
the three groups have the same spread (standard deviation) throughout the
experiments, and only differed in their centers. In Experiment 1 and 3, participants
were informed that the centers of the three groups only varied horizontally.

Models. Generative model. The target belongs to category C ∈{1, 2, 3}. The two-
dimensional position s of a target in category C is drawn from a two-dimensional
Gaussian p(s | C)=N(s; mC, σs2I), where mC is the center of category C, σs2 is the
variance of the stimulus distribution, and I is the two-dimensional identity matrix.
We assume that the observer makes a noisy sensory measurement x of the target
position. We model the sensory noisy using a Gaussian distribution centered at s
with covariance matrix σ2I. Thus, the distribution of x given category C is p(x | C)
=N(x; mC, (σs2+ σ2)I).

Inference on a given trial. We assume that the observer knows the mean and
standard deviation of each category based on the exemplar dots, and that the
observer assumes that the three categories have equal probabilities. The posterior
probability of category C given the measurement x is then p(C | x) ∝ p(x | C)=N(x;
mC, (σs2+ σ2)I). Instead of the true posterior p(C | x), the observer makes the
decisions based on q(C | x), a noisy version of the posterior probability. We obtain a
noisy posterior q(C | x) by drawing from a Dirichlet distribution. The Dirichlet
distribution is a generalization of the beta distribution. Just like the beta
distribution is a continuous distribution over the probability parameter of a
Bernoulli random variable, the Dirichlet distribution is a distribution over a vector
that represents the probabilities of any number of categories. The Dirichlet
distribution is parameterized as

p q p; αjð Þ ¼ 1
BðαpÞ

Y3
i¼1

qαpi�1
i

BðαpÞ ¼
Q3
i¼1

ΓðαpiÞ

Γ α
X3
i¼1

pi

 !

Γ represents the gamma function. p is a vector consisting of the three posterior
probabilities, p= (p1, p2, p3)= (p(C= 1 | x), p(C= 2 | x), p(C= 3 | x)). q is a vector
consisting of the three posterior probabilities perturbed by decision noise, q= (q1,
q2, q3)= (q(C= 1 | x), q(C= 2 | x), q(C= 3 | x)). The expected value of q is p. The
concentration parameter α is a scalar whose inverse determines the magnitude of
the decision noise; as α increases, the variance of q decreases. To make a category
decision, the observer chooses the category that maximizes the posterior
probability: Ĉ ¼ argmax

C
q C xjð Þ.

We considered three models of confidence reports. We first specify in each
model an internal continuous confidence variable c*. In the Max (maximum a
posteriori) model, c* is the posterior probability of the chosen category:
c* ¼ q C ¼ Ĉ xj� �

. In the Difference model, c* is a difference:

c* ¼ q C ¼ Ĉ xj� �� q C ¼ Ĉ2 xj
� �

, where Ĉ2 is the category with the second-highest

posterior probability. In the Entropy model, c* is the negative entropy of the
posterior distribution: c* ¼P3

C¼1 q C xjð Þ log q C xjð Þ.
In each model, the internal confidence variable c* is converted to a four-point

confidence report c by imposing three confidence criteria b1, b2 and b3. For
example, c= 3 when b2 < c* < b3. This implementation accommodated any type of
mapping between the internal confidence variables c* and the four-level button
press, as long as the reported levels monotonically increased with the internal
confidence variables c*. We also included a lapse rate λ in each model; on a lapse
trial, the observer presses a random button for both the decision and the confidence
report. In addition to the models that included both sensory and Dirichlet decision
noise, we took a factorial approach and tested various combinations of confidence
model and sources of variability61–63. For each of the three main confidence models
(Max, Difference and Entropy), we tested two reduced models by removing either
the sensory noise (by setting σ= 0) or the decision noise (by setting q(C | x)= p
(C | x)) from the model, leading to nine models reported in Supplementary Figs. 4
and 5. In addition, we fitted these nine models with confidence reports only,
without jointly fitting the category decisions (Supplementary Figs. 6 and 7). We
also fitted the category decisions alone by three different models. These three
models all chose the category with the highest posterior probability, but considered
different sources of variability (sensory noise only, decision noise only, or both;
Supplementary Fig. 8).

In addition to the nine models reported in Supplementary Fig. 4 and
Supplementary Fig. 5, we furthermore tested 21 alternative models (Supplementary
Fig. 10), including Bayesian models with various sources of variability and heuristic
models that made decisions without computing posterior probability. The details of
these models are described in Supplementary Information.

Response probabilities. So far, we have described the mapping from a
measurement x to a decision Ĉ and a confidence report c. The measurement,
however, is internal to the observer and unknown to the experimenter. Therefore,
to obtain model predictions for a given parameter combination (σ, α, b1, b2, b3, λ),
we perform a Monte Carlo simulation. For every true target position s that occurs
in the experiment, we simulated a large number (10,000) of measurements x. For
each of these measurements, we compute the posterior p(C | x), add decision noise
to obtain q(C | x), and finally obtain a category decision Ĉ and a confidence report
c. Across all simulated measurements, we obtain a joint distribution
p Ĉ; c s;j σ; α; b1; b2; b3; λ
� �

that represents the response probabilities of the observer.
Model fitting and model comparison. We denote the parameters (σ, α, b1, b2, b3,

λ) collectively by θ. We fit each model to individual-subject data by maximizing the
log likelihood of θ, log L θð Þ ¼ log p data θjð Þ. We assume that the trials are
conditionally independent. We denote the target position, category response, and
four-point confidence report on the ith trial by si, Ĉi , and ci, respectively. Then, the
log likelihood becomes

log L θð Þ ¼ log
Y
i

p Ĉi; ci si;j θ
� � ¼X

i

log p Ĉi; ci si;j θ
� �

;

where p Ĉi; ci si; θj� �
is obtained from the Monte Carlo simulation described above.

We optimized the parameters for each individual using a new method called
Bayesian Adaptive Direct Search64. We used AIC for model comparison. To report
the AIC, we computed the AIC for each individual and then summed the AIC
across participants. The confidence interval of the group-summed AIC was
estimated by bootstrapping. We also reported BIC in Supplementary Information.

Parameterization. The three main models (Max, Difference and Entropy models
reported in Fig. 4) have the same set of free parameters including the magnitude of
sensory noise (σ), the magnitude (concentration parameter) of decision noise (α),
three boundaries for converting internal continuous confidence variable to button
press (b1, b2, b3) and a lapse rate λ. For each of the three models, we tested two
versions of the reduced models (Supplementary Figs. 4–6). In one version, we kept
the sensory noise (σ) in the model while removing the decision noise (α). In the
other version we kept the decision noise (α) in the model while removing the
sensory noise (σ). The details of other alternative models are described in Supple-
mentary Information.

Model recovery. To evaluate our ability to distinguish the three models, we per-
formed a model recovery analysis. Based on the design of each experiment
(including the stimulus distributions, target locations and the number trials), we
synthesized a dataset based on the best-fit parameters of each participant. We then
fit each of the datasets with the three models. Supplementary Fig. 3 illustrates the
results summed over all participants in each experiment.

Data visualization. For Experiments 1 and 3, we used a sliding window to visualize
the psychometric curves, defined as the confidence ratings as a function of hor-
izontal location of the target dot. The sliding window had a width of 0.6°. We
moved the window horizontally (in a step of 0.1°) from the left to the right of the
screen center. At each step, we computed mean confidence rating by averaging the
confidence reports c of all the trials that fell within the window (based on the
horizontal target location of each trial). We first applied this procedure to indi-
vidual data, and then averaged the individual psychometric curves across subjects
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(Fig. 3b, Supplementary Figs. 2, 7, 9 and 11). For Experiment 1, we visualized the
data ranging from −3.5° to +3.5° from the screen center. For Experiment 3, we
visualized the data ranging from −5° to +5° from the center. These ranges were
chosen so that each steps along the curves in Fig. 3b, Supplementary Figs. 2, 7, 9 and
11 contained at least five trials per subject on average. To visualize the model fit, we
sampled a series of evenly spaced target dot locations along the horizontal axis (in a
step of 0.1°), and we used the best-fitting parameters to compute the confidence
reports predicted by the models for each target location. We then used the same
procedure (a sliding window) to compute the mean confidence rating predicted by
the models (the model-fit curves in Fig. 3b, Supplementary Figs. 2, 7, 9 and 11).

For Experiment 2, the “psychometric curve” became a heat map in a two-
dimensional space (Fig. 5). We tiled the two-dimensional space with non-
overlapped hexagonal spatial windows (with a radius of 0.25°) positioned from −3°
to +3° (Fig. 5a) along both horizontal and vertical axis. To compute the mean
confidence rating for each hexagonal window, we averaged the confidence ratings
across all the trials fell within that window for each participant. If the number of
trials was zero among all the participants for a window, that window was left as
white in Fig. 5a. To visualize the model fit, we used the best-fitting parameters and
computed the confidence reports predicted by the models for an array of target
locations (a grid tiling the two-dimensional space with a step of 0.1° along both
horizontal and vertical axis). The predicted confidence reports were then averaged
within each hexagonal window.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this paper are available on https://github.com/
hsinhungli/confidence-multiple-alternatives

Code availability
The analysis code used in this paper is available on https://github.com/hsinhungli/
confidence-multiple-alternatives
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